Uni students create 3D felt sculptures with a robotic arm

The robotic needle felting process suitable for the creation of 3D complex felt shapes was developed by Wes McGee, Tsz Yan Ng and Asa Peller from Taubman College – Michigan.

Felt is a nonwoven textile material made from either natural fibers such as wool or synthetic ones. It is produced by matting, condensing and pressing fibers together, at times combining natural and synthetic ones. On an industrial level, this work is already done by machines, but the project developed by the Taubman College Architecture and Urban Planning’s team enhanced this process with advanced technologies, opening new opportunities for felt.

The Taubman College’s team is working to innovate the textile industry which has not advanced remarkably in recent years. Some progress was made by the introduction of 3D knitting and weaving, but these processes set limitations on the resulting fiber density and thickness, limiting the various felt properties.

In fact, felt has the unique ability to be seamlessly added into a cohesive solid. Moreover, nonwoven textiles have numerous performative aspects, including excellent acoustic absorption, thermal insulation and tactile characteristics. By developing a digitally controlled methodology for influencing these properties, the Taubman College’s team opens a wide range of potential applications in architecture for nonwoven textiles.

HARD + SOFT, developed by Taubman College's team , is a robotic needle felting process analogous to a 3D printing machine
The HARD + SOFT machine works similarly to a 3D printing machine

HARD + SOFT is a robotic needle felting process based on an additive mechanism, which binds the material together without the addition of sewen thread or adhesives. It works similarly to a 3D printing machine: a robotic head equipped with a needle is fed a strip of felt that it then lays out and attaches onto a foam substrate. 

HARD + SOFT can felt in 3 dimentions, allowing the production of sculptural elements and complex geometries
Processing felt across 3 dimensions, HARD + SOFT can produce sculptural elements and complex shapes

This robotic process not only enables precision and speed in the manufacturing of nonwoven textiles, but felting in 3 dimensions rather than 2 implements its capabilities, allowing the production of sculptural elements and complex geometries. It also means that a felt panel can have local differentiation of stiffness and properties within it, without affecting the outer surface.

HARD + SOFT employes three felting techniques including quilting, shiplap and shingle
3D felting process can be applied to create acoustic panels and clad surfaces

Taubman College’s team entirely design the tools and the digital workflow to realize their robotic needle felting process, developing three original techniques: shiplap, shingle and quilt, each with different textural effects and methods for productions. All these techniques employ the use of a continuous feeding system which places the felt and cuts it precisely as a fully automated process. These techniques were then applied to create prototypes of architectural and interior elements such as acoustic panels, clad surfaces, and a pouf.

HARD+SOFT can be used to procede felt architectural and interior elements
HARD + SOFT emploies the use of a continuous feeding system which places the felt and cuts it precisely as a fully automated process
The team made a felted pouf as well as several prototype panels using HARD + SOFT robotic needle felting process